A Systematic way for Image Segmentation based on Bacteria Foraging Optimization Technique

نویسندگان

  • Amrinder Singh
  • Sonika Jindal
چکیده

Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a global optimization algorithm of current interest for distributed optimization and control. BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA has already drawn the attention of researchers because of its efficiency in solving real-world optimization problems arising in several application domains. The purpose of this paper is to detect the image segmentation in an efficient way using Bacterial Foraging Optimization which is an optimization technique inspired from E. coli bacteria and does not require any threshold values in image segmentation. Hence, this technique helps to reduce the computational complexity and time consuming. It is also demonstrated in this study that this method can rectify the shortage perfectly, and obtain a more ideal edge image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MR Brain Image Segmentation using Bacteria Foraging Optimization Algorithm

-The most important task in digital image processing is image segmentation. This paper put forward an unique image segmentation algorithm that make use of a Markov Random Field (MRF) hybrid with biologically inspired technique Bacteria Foraging Optimization Algorithm (BFOA) for Brain Magnetic Resonance Images The proposed new algorithm works on the image pixel data and a region/neighborhood map...

متن کامل

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

Image Segmentation using Improved Bacterial Foraging Algorithm

Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a global optimization algorithm of current interest for distributed optimization and control. BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA has already drawn the attention of researchers because of its efficiency in solving real-world optimization problems arising in several application dom...

متن کامل

An Improved Pixon-Based Approach for Image Segmentation

An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...

متن کامل

Color Image Quantization based on Bacteria Foraging Optimization

Bacterial Foraging Optimization (BFO) is optimization technique proposed by K. M. Passino in 2002 To tackle complex search problems of the real world, scientists have been drawing inspiration from nature and natural creatures for years. Bacterial Foraging Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. A Color images Quantization is necessary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014